WINNIPEG SEWAGE TREATMENT PROGRAM

SEWPCC

Process Selection Report presentation

January 24th 2011 - Winnipeg

Purpose of the meeting

2 immediate purposes :

- Explain the recommandation of the PSR to the Management Team
- Get the agreement of the MT on the recommended process selection

Within the following global objectives :

- Be able to plan SEWPCC Preliminary Design and the required intermediary steps
 - Septage analysis
 - Leachate analysis
 - Sludge analysis
- Be able to plan the Target Cost estimation

- I- Basic assumptions definition
- II- Pre-selection of the process options
- III- Comparison of the pre-selected options
 - III.1- Technical comparison
 - III.2- Financial comparison
- IV- Pending issues excluded from scoring
- V- Recommendation

I- Basic assumptions definition • Sewage characteristics Concerns Effluent quality requirements (license interpretation) 0 SEWAGE CHARACTERIZATION Methodology ⇒ Use of SEWPCC recorded data between January 2005 – April 2010 for per capita flows and loads calculation **Base line** characterisation ⇒ 2010 population estimation in SEWPCC area = 194,152 \Rightarrow 2031 population projection = **250,000** Projection ⇒ Use of current per capita flows and loads for both the current population and the population growth

I- Basic assumptions definition

Main results

	Units	Flowmeters
Annual average flow	MLD	88
Average dry weather flow	MLD	70
Spring max month	MLD	120
Peak wet weather flow	MLD	403
Peak hourly flow	MLD	415

ANNUAL AVERAGE

TEMPERATURE LOAD CONCENTRATION FLOW TSS TSS BOD MAX MIN BOD TKN ΤP TΡ TKN °C MLD MLD °C Kg/d Kg/d Kg/d Kg/d mg/l mg/l mg/l mg/l Average 87.5 87.5 3,532 552 182 15,912 18,777 215 40.4 6.3

I- Basic assumptions definition

O EFFLUENT QUALITY REQUIREMENTS

• Design based on the license requirements with the exception of

	LICENSE		DESIGN ASSUMPTIONS		5	
TSS	never to exceed	30	mg/l	30-day rolling average	<25	mg/l
$CBOD_5$	never to exceed	25	mg/l	30-day rolling average	<25	mg/l

D

- Because « never to exceed » contrainst
- Higher Capex & Opex
- Low environmental benefit
- Operating difficulties under normal conditions

 In case the license challenge is refused by the Regulator The impact won't change the ranking of the options as additional capital cost will increase in proportion to current option Capex

bigger current Capex \Rightarrow bigger financial impact

► 3 options built on

- Stantec's work
- Veolia's experience and knowledge
- S Validation by an external independant 3rd party
- Option G / 2 : AS/BNR/MJ/ IFAS

Introduction of a new technology : BAF

- Option 3 : AS/BNR/BAF(N)/BAF(PDN)
- Option 4 : BAF(NDN)/BAF(PDN)

Because of :

- Significant Capex savings
- Small footprint / short construction duration
- R&D is likely to allow bioP combined with BAF

II- Pre-selection of the process options **OPTION 2 : IFAS** RAW WATER PUMPS Screenings to SCREENING skips Grits **GRIT REMOVAL** From 300 MLD up to 415 MLD Up to 120 MLD From 120 MLD to 300 MLD **BALLASTED PRIMARY** PRIMARY SETTLERS Sludge to FeCl3 + SETTLER storage 4 units Sludge to polymer (2 units) thickening **BIO REACTORS** FeCl3 if 4 trains – IFAS required SECONDARY SETTLERS Sludge to CI2 Chlorination thickening < 5 units UV *VEOLIA* Winnipèg WATER River

OPTION 2 : IFAS

OPTION 3 : AS/BAF

OPTION 4 : BAF

	Advantages	Disadvantages
	BioP removal possible	Big footprint and expensive to cover
	Smaller amount of sludges produced	Potential odours mainly from anoxic/anaerobic tanks
	No real practical limit for influent TSS	Sludge bulking and foaming issue
	Primary clarification without chemicals	Filamentous bacteria issue
: IFAS	No PDN required	Sensitive to a dilute influent. Can be oversized in these conditions.
ION 2	Same process than WEWPCC	Need good operator knowledge
OPT		BioP sludges require proper processing to avoid P returns to the process (aerobic, fast processing, etc)
		Potential losses of biomass in peak flows (mitigated with secondary bypass in peak flow condition)
		Long construction & commissioning and significant interfaces

	Advantages	Disadvantages
	BioP removal possible	Sludge bulking issue (less probable than for option 2)
	Smaller amount of sludges produced	Sensitive to the influent's dilution. Can be oversized in these conditions.
AF	No real practical limit for influent TSS	BioP sludges require proper processing to avoid P returns to the process (aerobic, fast processing, etc)
3 : AS / B,	Primary clarification without chemicals	Significant maintenance on M&E
NO	Full nitrification possible even in cold water	Two processes to operate
OPTI	Smaller footprint than option 2	Need excellent operator knowledge
_	Robust process: Secondary clarifiers effluent can have some TSS without impacting the final effluent quality because of tertiary filtration	Long construction & commissioning and significant interfaces
	Ability of running with only nitrification	

	Advantages	Disadvantages
	Small footprint	Full bioP removal impossible so far
	Short delay of construction	Primary clarification mandatory with chemicals
	Can be covered easily	Important production of sludges (from coagulant dosage)
	Full nitrification possible even in cold water	Backwash water must be clarified using coagulant
: BAF	No secondary clarifier	Methanol dosage required to reach effluent TN objectives (PDN)
ON 4	No sludge bulking pb	
OPTI	Very rare filamentous bacteria pb with no impact on operation	
	Flexibility in quantity & quality	
	Fully automated and easy operation	
	Low maintenance	
	Ability of running with only nitrification	

- III.1- Technical comparison
 - <u>2 dimensions of comparison :</u>
 1 Technical
 2 Financial
 - Technical level : 3 categories : process, constructability & operation / 21 criteria
 - Weighting and scoring were independent procedures
 - Balanced contribution from CoW and Veolia + EAP pre scoring

		Technical scores
_	Option 2	660
0	Option 3	630
	Option 4	729

- All pre-selected options passed the technical selection
- Sensitivity analysis of the technical scoring does not indicate a single compelling option

III.1- Technical comparison

Results of the carbon footprint estimate

Emissions on lifetime

- Construction impact not significant
- Option 4 higher because of :
 - Chemical usage
 - Higher sludge volume generated

► <u>Mitigation opportunities</u>

- Freight for sludge can be reduced depending on the biosolid management plan results
- Leads for reducing the chemicals footprint

III.2- Financial comparison

Financial dimension :

CAPEX build-up

M&E : benchmark & equipment list

Civil : <u>unit rates</u> & <u>BOQ</u>

Civil works		·
Tank roofing cost */**	1280	\$/m2
Building cost */**	1920	\$/m2
Concrete cost for activated sludge	1500	\$/m3
Concrete cost for clarifiers or settling	1600	\$/m3
Concrete cost for biofilters and actiflo	1700	\$/m3

Source of information CoW + validation from Hanscomb CoW + validation from Hanscomb CoW + validation from Hanscomb CoW + validation from Hanscomb

III.2- Financial comparison

Financial dimension :

CAPEX build-up				
M&E	: <u>benchmark</u> & <u>equipment list</u>			
Civil	: <u>unit rates</u> & <u>BOQ</u>			
Provisional sums	: <u>Rates</u> & <u>update</u> of Stantec's estimates			
R&O	: Risk & opportunity matrix			

	Occurrence	Amount in M uc			
RISKS	Occurrence	Option 2	Option 3	Option 4	
Geotechnics	50%	1.8	1.8	0.8	
Climate	winter times	1.3	1.4	0.7	
Hydraulic profile	50%	1.3			
Asset assessment	50%			0.3	

	Occurrence	Amount in M uc			
OPPORTUNITIES	Occurrence	Option 2	Option 3	Option 4	
Odour treatment	100%		0.3	2	
External works	100%	0.03	0.03	0.1	

Total R&O option 2	4.3 M	uc	
Total R&O option 3	2.9 M	uc	
Total R&O option 4	-0.3 M	uc	

III.2- Financial comparison Financial dimension :

	CAPEX build-up	250,000,000.00		
M&E	: <u>benchmark</u> & <u>equipment list</u>	200,000,000.00		Total
Civil	: <u>unit rates</u> & <u>BOQ</u>	150,000,000.00		■ R&O
Provisional sums	: <u>Rates</u> & <u>update</u> of Stantec's estimates	100,000,000.00		Civil
R&O	: Risk & opportunity matrix	0.00 Option 2	2 Option 3 Option4 Opt	ion G
		OPTION 2	OPTION 3	OPTION 4
то	TAL CAPEX PROJECT VALUE uc	203.8 M	214 M	160.4 M
Vai	riance in CAPEX from cheapest option	27%	33%	0%
		without the 10% contine	encies for change orde	ers during construction)

Independant Stantec's option G update estimates = 215.4 M CAD

III.2- Financial comparison

OPEX build-up		
Elec Chemicals Sludge hauling	: <u>op balance</u> & <u>unit costs</u>	Che Fer Met Poly
to NEWPCC UV bulbs	: <u>fixed price</u>	Slu Slu Slu

Power			Source of information
Electricity cost	0.047	\$/kWh	CoW - Eng Dpt
Chemicals			
Ferric chloride cost	328.57	\$/m3	CoW - Eng Dpt
Methanol cost	368.25	\$/m3	Veolia + CoW - Eng Dpt
Polymer cost	3.89	\$/kg	CoW - Eng Dpt
Sludge transportation			
Sludge truck volume	30	m3/load	CoW - Eng Dpt
Sludge truck cost	130.8	\$/load	CoW - Eng Dpt
UV bulbs			
Replacement cost	350	\$/bulb	CoW - Op Dpt
Life time	8000	hours / bulb	CoW - Op Dpt

III.2- Financial comparison

Winnipeg

Global scores	%
849	94%
812	89%
907	100%

Based on the scoring, the preferred option is option 4

- Before recommending, the comprehensiveness of the process and its relevancy must be ascertained
 - Possible issue #1 : septage management Same impact on all options
 - Possible issue #2 : leachate management Same impact on all options
 - - All options produce treatable sludges
 - Volumes of sludges significantly different between the options

May combined cost of main treatment & sludges change the ranking of main treatment options ?

- Relevant assumptions :
 - 5 biosolids options reviewed

- Pelletization
- O Thermal oxidation
- Composing
- 4 Land filling
- S Land application
- Sludge Capex : from Stantec's PDR 2008
- Sludge Opex : from Stantec's PDR 2008 for **①**, **②** and **③**

from current Opex for **4** and **5**

- Sludge production : from PSR
- Dry solids data : from the CoW and PSR

		Option 2	Option 4	Difference
	A1 - pelletization	267.03 MCAD	257.99 MCAD	-MCAD 9.04
	A2 - thermal oxidation	274.80 MCAD	261.01 MCAD	-MCAD 13.79
NPV total	A3 - composting	275.31 MCAD	260.62 MCAD	-MCAD 14.69
	A4 - landfilling	257.90 MCAD	246.04 MCAD	-MCAD 11.85
	A5 - land application	256.93 MCAD	246.50 MCAD	-MCAD 10.43

A1 - Pelletization	GLOBAL SCORING
Option 2	859.31
Option 4	913.05

A3 - Composting	GLOBAL SCORING
Option 2	855.63
Option 4	920.27

A2 - Thermal oxidation		GLOBAL SCORING
Option 2		857.08
Option 4		918.81

A4 - Landfilling	9	GLOBAL SCORING
Option 2		857.21
Option 4		910.81

A5 - Land application	GLOBAL SCORING
Option 2	855.90
Option 4	909.13

- All biosolid options lead to a closer gap between the combined NPV of main treatment and sludge but option 4 is always better
- Biosolid options will not change SEWPCC main treatment rankings
- Treatment decision can be taken without compromising future biosolids options

V- Recommendation

- **Option 4** is recommended as it has :
- ✓ the best global score
- \checkmark and the lowest whole life cost

However, there are downsides like :

Which can be mitigated by :

- ✓ Higher sludge production
- \checkmark Higher carbon footprint
- ✓ Higher Opex
- ✓ No full BioP removal
- ✓ Green chemicals development
- ✓ Energy recovery capacities
- ✓ Process evolution

